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Abstract

As a new attempt to solve hyperbolic conservation laws with spatially varying fluxes, the weighted essentially non-
oscillatory (WENO) method is applied to solve a multi-class traffic flow model for an inhomogeneous highway. The
numerical scheme as well as an analytical study is based upon a modified equivalent system that is written in a ‘‘stan-
dard’’ hyperbolic conservation form. Numerical examples, which include the difficult traffic signal control problem, are
used to demonstrate the effectiveness of the WENO scheme in which the results are in good agreement with the ana-
lytical counterparts.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, we extend a multi-class Lighthill–Whitham–Richards (LWR) traffic flow model [21,23,28]
to deal with inhomogeneous road conditions. The variable road conditions are the number of lanes a(x) and
the free flow (maximum) velocities fvl;f ðxÞgml¼1 of m types of vehicles. Let ql(x,t) be the density per lane of
the lth type, and let
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qðx; tÞ ¼
Xm
l¼1

qlðx; tÞ
be the total density per lane. The velocity of the lth type of vehicles is a function of q, which is denoted by
vl(q). Furthermore, we assume that fvlgml¼1 are related by
vl ¼ blðxÞvðqÞ; v0ðqÞ < 0; blðxÞ ¼ vl;f ðxÞ=vf ; vf � max
x

max
16l6m

ðvl;f ðxÞÞ; ð1:1Þ
where the free flow velocity vf is the maximum of the free flow velocities vl,f(x) of the lth type at location x.
Accordingly, the velocity differences between m vehicle types are reflected by the functions fblðxÞgml¼1 and
0 6 bl(x) 6 1.

The model equations are acquired from the mass conservation of m types of vehicles, which read
ðaðxÞqlÞt þ ðaðxÞqlblðxÞvðqÞÞx ¼ 0; 1 6 l 6 m: ð1:2Þ

Eq. (1.2) is a natural extension of the so called multi-class LWR model that was proposed in [21] and stud-
ied in [23,28]. The present model reduces to that in [21,23,28] when a(x) and fvlgml¼1 are constants. We intro-
duce the conservative solution variables ul = a(x)ql, the vector u = (u1, . . . ,um)

T, and the flux vector
f = (f1, . . . ,fm)

T with fl = blulv(Rul/a). Accordingly, the model equations can be written as
ut þ f ðu; hðxÞÞx ¼ 0; ð1:3Þ

where the vector function h(x) represents all inhomogeneous factors on the road, namely,
hðxÞ ¼ ðaðxÞ; b1ðxÞ; . . . ; bmðxÞÞ:
In this traffic flow problem, each density ql and the total density q are bounded by a jam density qjam, and
thus
u=a 2 �D; �D ¼ u=ajql P 0; l ¼ 1; . . . ;m;
Xm
l¼1

ql 6 qjam

( )
: ð1:4Þ
Moreover, the function v(q) of (1.1) satisfies
vð0Þ ¼ vf ; vðqjamÞ ¼ 0:
The study of this extended traffic flow system is significant both for practical application and theoretical
interest. In real traffic, the drop or increase in traffic capacity that is reflected by h(x) is frequent in many
locations, such as on curves and slopes and near ramps and traffic accidents. In particular, by extension
bl = bl(x,t) can serve as a switch function in signal traffic or the like (see Section 4.2 for this extension).
These changes are usually very sharp, thus, all the coefficients in h are treated as being discontinuous at
the change. In other words, the flux f(u,h(x)) is a discontinuous function of location x through the discon-
tinuous function h(x). When the extension bl = bl(x,t) is considered, the flux f(u,h(x,t)) is a discontinuous
function of location x and time t through the discontinuous function h(x,t). Another complication comes
from the fact that it is usually impossible (for m > 2) to solve the eigen-polynomial of system (1.3) explicitly,
let alone the solutions to Riemann problems. One would thus be limited to use very crude approximate Rie-
mann solvers such as the Lax–Friedrichs solvers for numerical schemes. Hence, first or even second-order
numerical methods will be very dissipative. These together pose significant difficulties for both analytical
and numerical studies. See for example [1,2,9,13,14,24–27] for related discussions.

In this paper, some important features of the model are discussed under a modified equivalent system of
(1.3), in which all of the components of h are solution variables. Analytically, the hyperbolicity of the
system is proven, and the wave-breaking patterns of the Riemann problem are predicted. We note that
these descriptions are mostly based on the relevant studies in [24,28]. The maximum absolute value of
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all of the eigenvalues is estimated, which is an essential parameter in the proposed numerical schemes. We
note that these eigenvalues cannot be explicitly solved (see Section 2 for this discussion).

In developing the numerical schemes, it may not be efficient to apply the standard methods (e.g., TVD,
RKDG, and WENO schemes) to system (1.3) directly due to its spatially varying fluxes, especially because
the dependency of the flux on the spatial variable x is discontinuous. It should be mentioned that a wave-
propagation method was recently developed that generated good numerical results in solving elastic waves
in heterogeneous media, which constitute a 2 · 2 system with spatially varying fluxes [2]. Nevertheless, this
method is limited to problems in which an eigenvalue has a fixed sign for all involved u and h(x), and re-
quires that the eigenvalues can be solved explicitly. Therefore, this method is not suitable for our problem,
in which one of the eigenvalues changes sign, and all are implicit. In [24–27], Zhang et al. developed a
numerical scheme to deal with spatially varying fluxes for the scalar case, which can also be extended to
the vector case.

With a modified equivalent system of (1.3), a component-wise WENO scheme that applies the Lax–
Friedrichs numerical flux in the finite volume method and the flux splitting in the finite difference method
are discussed in Section 3. As the modification gives rise to a standard hyperbolic conservation form,
the scheme is theoretically sound, and numerically gives good results. Although the Riemann problem of the
system generates very complicated wave structures, the numerical results are in good agreement with the
claimed wave patterns (Section 4.1). For sharp changes of bl from their maxima to minima, which describes
the sharp braking of vehicles, the resultant strong discontinuity at the interface is well captured (Section
4.2). We note that this is the first time that the WENO scheme has been applied to hyperbolic conservation
laws with spatially varying fluxes. Similar applications to other problems may be possible, which is ad-
dressed in Section 5 with several concluding remarks. We also note that, even though the solutions for such
traffic flow models have relatively simple structures (almost linear) between discontinuities, the fact that the
eigenvalues of the flux Jacobian cannot be obtained explicitly, let alone explicit solutions to the Riemann
problems, restricts first and second-order numerical methods to use crude approximate Riemann solvers,
such as the Lax–Friedrichs solvers. As a result, first and second-order numerical methods will be very
dissipative, and may miss important solution features such as small shocks completely unless an extremely
refined mesh is used (see [23] for such an example; see also the last example in Section 4). Therefore, high
order WENO schemes as those used in this paper are still good choices to resolve the solution with a coarse
mesh to save computational cost.
2. Hyperbolicity and wave structure of the model equations

To study the hyperbolicity and solution structure of the system, we rewrite (1.3) in the ‘‘standard’’ con-
servation form, which means that we add the identity ht = 0 to (1.3). This identity is naturally modified
when h depends on t in the extension in Section 4.2. For convenience, we treat h as a scalar in the following
discussions, but the results are equally applicable to the vector case. Accordingly, (1.3) and the added iden-
tity can be viewed as the following equivalent (m + 1) · (m + 1) system:
Ut þ F x ¼ 0; ð2:1Þ

where U = (u,h)T and F = (f(u,h),0)T. We note that the construction of equivalent forms of the conservation
laws with spatially varying fluxes is widely applied, for example in [1,9,14,25]. According to this standard
conservation form, we study the hyperbolicity of the system. We write the Jacobian FU and the matrix for
solving the eigen-pairs as follows:
F U ¼
fu fh
0 0

� �
; F U � kImþ1 ¼

fu � kIm fh
0 �k

� �
; ð2:2Þ
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where 0 = (0, . . . ,0) has m components, fh = (f1h, . . . ,fmh)
T and Im is the m · m identity matrix. Let
jfu � kImj ¼ PmðkÞ
and then the eigen-polynomial of FU is
jF U � kImþ1j ¼ �kPmðkÞ: ð2:3Þ
2.1. Hyperbolicity of the model equations

For the discussed system, it is not difficult to obtain [28]
PmðkÞ ¼ QðkÞ
Ym
l¼1

ðvl � kÞ; QðkÞ ¼ 1þ
Xm
l¼1

ql

vl � k
ovl
oq

: ð2:4Þ
For u/a 2 D, where D is the open domain that corresponds to �D of (1.4), we suppose that fvlgml¼1 are dis-
tinct, namely,
v1 < � � � < vm; ð2:5Þ

then it is easy to verify that, by (2.4),
sgnðPmðvlÞÞ ¼ ð�1Þl; sgn Pm v1 þ
Xm
l¼1

ql
ovl
oq

 ! !
¼ 1: ð2:6Þ
By the intermediate value theorem, (2.6) suggests m distinct real eigenvalues fkgml¼1 of the Jacobian fu, which
are separated by m velocities as follows:
v1 þ
Xm
l¼1

ql
ovl
oq

< k1 < v1 < k2 < � � � < vl�1 < kl < vl < � � � < vm�1 < km < vm: ð2:7Þ
For u/a 2 oD, m real eigenvalues of fu are also ensured, and some inequalities of (2.7) change to equalities.
The hyperbolicity of this latter case is rather complicated, but to a degree can be viewed as the limiting case
of the former (see [28] for more details). For simplicity, this case is excluded from this section and from
Section 2.2.

By (2.3), therefore, we conclude that the Jacobian Fu has m + 1 real eigenvalues fklgml¼1 and
~k ¼ 0, and

thus that (2.1) is a hyperbolic system. Furthermore, by (2.7) it is obvious that these m + 1 eigenvalues are
distinct if and only if k1 6¼ ~k ¼ 0, in which case (2.1) is strictly hyperbolic. As is shown in the following, it is
possible to have k1 ¼ ~k ¼ 0, in which case system (2.1) is generally non-strictly hyperbolic.

Substituting k with k1 = 0 in (2.4) and with all vl being given by (1.1), we have
Qð0Þ ¼ q0ðqÞ
vðqÞ ; sgnðPmð0ÞÞ ¼ sgnðq0ðqÞÞ; ð2:8Þ
where q(q) = qv(q). Usually, q(q) is supposed to be strictly concave [21,23,28], q00(q) < 0. Assume that q(q*)
is the maximum of q(q), such that
q0ðq�Þ ¼ 0; q0ðqÞ > 0 for q < q�; q0ðqÞ < 0 for q > q�;
where q* is the critical density, as it is called in many traffic flow models. Accordingly, (2.8) and (2.6) give
the following conclusion:
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k1

>0 if q < q�;

¼0 if q ¼ q�;

<0 if q > q�:

8><
>: ð2:9Þ
This is again derived by the intermediate value theorem.
Suppose that ðrTl ; zlÞ

T is an eigenvector that corresponds to kl, where rl is a m · 1 vector and zl is a scalar,
then we have
k ¼ kl : ðF U � klImþ1Þ
rl
zl

� �
¼

fu � klIm fh
0 �kl

� �
rl
zl

� �
¼

ðfu � klImÞrl þ zlfh
�klzl

� �
¼ 0:
This indicates that we can take zl to be zero and rl to be the eigenvector of fu that corresponds to kl.
Suppose that ð~rT;~zÞT is an eigenvector that corresponds to ~k ¼ 0. Similarly, we have
~k ¼ 0 : ðF U � ~kImþ1Þ
~r

~z

� �
¼

fu fh
0 0

� �
~r

~z

� �
¼

fu~r þ ~zfh
0

� �
¼ 0;
which implies that ~r is the solution of the algebraic equations
fu~r ¼ �~zfh: ð2:10Þ

Denote by r = (r1, . . . ,rm) a non-singular matrix of right-eigenvectors of fu. The matrix of the right-eigen-
vectors of FU then reads
R �
r ~r

0 ~z

� �
:

If k1 6¼ 0, then fu is non-singular. We choose ~z 6¼ 0 in (2.10), and thus ~r is uniquely determined as
~r ¼ �~zf �1

u fh. In this case R is non-singular and
R ¼ r �~zf �1
u fh

0 ~z

� �
; R�1 ¼ r�1 r�1f �1

u fh
0 1=~z

� �
:

If k1 = 0, then fu is singular. Consequently, R must be singular. This is obvious for ~z ¼ 0. For ~z 6¼ 0, if Eq.
(2.10) has a solution to ~r, then we would read rankðfu;�~zfhÞ ¼ rankðfuÞ ¼ rankðfu � k1ImÞ ¼ m� 1, for
which an identity is required. This is generally unlikely under the assumption that fh 6¼ 0. For the discussed
traffic flow problem, the required identity can be arranged as
Xm
l¼1

ofl
ox

1

vl
� 0 or a

Xm
l¼1

b0l
bl
ql �

v0

v
q2a0 � 0 for k1 ¼ 0 or q ¼ q�:
However, it is obvious that this condition does not hold for the traffic flow model.
In summary, system (2.1) is strictly hyperbolic for k1 6¼ 0, but non-strictly hyperbolic for k1 = 0.
2.2. Wave structure of the model equations

We consider the Riemann problem
u ¼ u1 if x < 0;

umþ1 if x > 0;

�
h ¼ hL if x < 0;

hR if x > 0;

(
ð2:11Þ
where the expression for h means that a(x) and bl(x) are discontinuous of x at the interface, with
hL ¼ ðaL; bL1 ; . . . ; bLmÞ and hR ¼ ðaR; bR1 ; . . . ; bRmÞ.
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The Riemann problem was solved exactly for a general scalar form of (1.3) (m = 1) in [24]. For the case
m = 2, k1 and k2 are explicit, but the solution is very complicated. For m > 2, no kl can be solved explicitly
in the discussed traffic flow problem, and thus it is very difficult to derive the analytical results [28]. How-
ever, some predictions of the wave structure are possible, because the wave breaking near the interface
would be similar to that for the scalar case that is discussed in [24]. Moreover, the monotone changes across
or within the waves other than the interface are well understood for the system in which h(x) is constant
[28], and these conclusions are still applicable in each of the regions D+ = {(x,t)|x > 0, t > 0} and
D� = {(x,t)|x < 0, t > 0}. The claimed wave structure in this section serves as a comparison for the numer-
ical results in Section 4.

We call a wave that corresponds to the kl- (or ~k-) characteristic field the kl- (or ~k-) wave. In accor-
dance with (2.7), these fklgml¼2-waves must be in the region D+ = {(x,t)|x > 0, t > 0}, and the ~k-wave can
be easily verified as a contact at the interface x = 0. See [10–12,18–20] for detailed accounts of the basic
properties of hyperbolic waves. Let uL = u(0�,t) and uR = u(0+,t), which are, respectively, the left and
right solution states that are adjacent to the interface, and we then have, by the Rankine–Hugoniot

jump condition,
f ðuL; hLÞ ¼ f ðuR; hRÞ: ð2:12Þ

As indicated in [24], the two states uL and uR should be also ‘‘connected’’ by the kl characteristics. This
argument implies that the propagation of the k1-characteristics may change the angle across the interface,
and should satisfy
k1ðuL; hLÞk1ðuR; hRÞ P 0: ð2:13Þ

Here, the equality means that k1(u

L,hL) or k1(u
R,hR) coincides with the contact ~k ¼ 0, in which case system

(2.1) must be non-strictly hyperbolic. We have, by (2.12),
aLbLl q
L
l vðqLÞ ¼ aRbRl q

R
l vðqRÞ; l ¼ 1; . . . ;m:
Let a1l ¼ aLbLl =ðaRbRl Þ and a2l = 1/a1l, and the aforementioned equation is then equivalent to
qR
l vðqRÞ ¼ a1lq

L
l vðqLÞ 8l; qRvðqRÞ ¼ vðqLÞ

Xm
l¼1

a1lq
L
l ; ð2:14Þ
where the second equation is obtained by the summation of the first over l. Similarly, we obtain
qL
l vðqLÞ ¼ a2lq

R
l vðqRÞ 8l; qLvðqLÞ ¼ vðqRÞ

Xm
l¼1

a2lq
R
l : ð2:15Þ
In the discussed traffic flow problem, it is reasonable to assume that
if a1k > 1 for some k; then a1l P 1 8l; ð2:16Þ

which indicates a non-increase or non-decrease (a1l P 1 or a1l 6 1) in traffic capacity for all types of vehi-
cles. Otherwise, the problem would be unrealistic, because the capacity drops for some vehicle types but
increases for others in the same location.

Whether system (2.1) is strictly hyperbolic will be subject to (2.13), because h(x) is only changeable
across the interface. Let u2 be the left solution state of the k2-wave (Figs. 1 and 2), and we then have
the following description.

(1) Suppose that k1(u
L,hL)k1(u

R,hR) > 0, then system (2.1) is strictly hyperbolic and we would expect
m + 1 waves. In addition to the ~k-contact at the interface, only one k1-wave is needed before the k2-wave.
This k1-wave is either in D+ or D� for the consideration of the following three cases:
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Fig. 1. Wave patterns that correspond to a strictly hyperbolic system (2.1): (a) the k1-characteristics pass through the interface from
left to right; (b) the k1-characteristics pass through the interface from right to left.

Fig. 2. Wave patterns that correspond to a non-strictly hyperbolic system (2.1): (a) the k1-characteristics of u = u1 are reflected from
the interface, forming an extra k1-wave in D�; (b) the k1-characteristics of u = u2 are reflected from the interface, forming an extra k1-
wave in D+.

P. Zhang et al. / Journal of Computational Physics 212 (2006) 739–756 745
(a) If k1(u
1,hL) > 0 and k1(u

2,hR) P 0, then it is natural to have uL = u1 and k1(u
L,hL) > 0. As k1(u

R,hR)
> 0, it is inferred by (2.9) that qR < q*. Such a unique qR and the components of uR are solvable by (2.14) if
and only if
vðqLÞ
Xm
l¼1

a1lq
L
l < q�vðq�Þ ¼ qðq�Þ: ð2:17Þ
In this case, we can say that the propagation of k1(u
1,hL) is able to pass through the interface and then

change to k1(u
R,hR), in which state uR forms the k1-wave with u2 in D+. Fig. 1(a) shows this wave pattern,

where a wave is represented simply by a radial.
(b) If k1(u

1,hL) 6 0 and k1(u
2,hR) < 0, then similarly we have uR = u2 and k1(u

R,hR) < 0, and thus
k1(u

L,hL) < 0 and qL > q*. By (2.15), qL and fqL
l g

m
l¼1 are uniquely solvable if and only if
vðqRÞ
Xm
l¼1

a2lq
R
l < q�vðq�Þ ¼ qðq�Þ: ð2:18Þ
In this case, we can say that the propagation of k1(u
2,hR) is able to pass through the interface and then

change to k1(u
L,hL), in which state uL forms the k1-wave with u1 in D�. This wave pattern is shown in

Fig. 1(b).
(c) If k1(u

1,hL) > 0 and k1(u
2,hR) < 0, then we have either uL = u1 or uR = u2. Accordingly, the wave pat-

tern is similar to that of 1(a) or (b), as is shown in Fig. 1(a) and (b). We note that at least one of Eqs. (2.14)
(with uL = u1) and (2.15) (with uR = u2) is solvable, because at least one of the conditions (2.17) (with
uL = u1) and (2.18) (with uR = u2) must hold under assumption (2.16).
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(2) Suppose that k(uL,hL)k(uR,hR) = 0, then system (2.1) is non-strictly hyperbolic and we predict a
total of m + 2 waves in the following. For all of the cases under consideration, we need two k1-waves
that are separated by the interface. This wave structure is also characterized by a k1-rarefaction, which
is either in D� or in D+, and is distinguished by two wave patterns that are shown in Fig. 2(a) and (b),
respectively.

(a) If k1(u
1,hL) > 0, k1(u

2,hR)P 0, and (2.17) is not satisfied for uL = u1 so that (2.14) is unsolvable (ex-
cept possibly for qR = q*), then by the assumption we can only choose k1(u

R,hR) = 0, namely qR = q*.
Moreover, by (2.14) and (2.15), we have
vðqLÞ
Xm
l¼1

a1lq
L
l ¼ q�vðq�Þ ¼ qðq�Þ; qLvðqLÞ ¼ vðq�Þ

Xm
l¼1

a2lq
R
l : ð2:19Þ
Comparing the first equation of (2.19) with (2.17), we can see that a maximal principle is applied. The sec-
ond equation of (2.19) is solvable, because it is implied that a2l 6 1 (a1l P 1) for all l, and thus
vðq�Þ

Pm
l¼1a2lq

R
l 6 vðq�Þq� ¼ qðq�Þ. Otherwise, by (2.16), we have a1l 6 1 for all l, and (2.17) will be satisfied

by uL = u1. However, this contradicts our assumption.
In this case, qL is chosen such that k(uL,hL) 6 0, namely qL P q*. Therefore, the propagation of

k1(u
1,hL) is unable to pass through the interface, and reflects backward so that u1 and uL form a k1-wave

in D�. Meanwhile, uR and u2 form another k1-wave that can be identified as a rarefaction (see Proposition
2.2), because qR = q* > q2. This wave pattern is shown in Fig. 2(a).

(b) If k1(u
1,hL) 6 0, k1(u

2,hR) < 0, and (2.18) is not satisfied for uR = u2 so that (2.15) is unsolvable
(except possibly for qL = q*), then we have k(uL,hL) = 0 or qL = q*. This case is parallel to 1(a), and the
wave structure is shown in Fig. 2(b), where two predicted k1-waves are also separated by the interface.
In contrast to 2(a), here it is the k1-wave in D� that is identified as a rarefaction (also see Proposition
2.2), because q1 > qL = q*.

(c) If k1(u
1,hL) < 0 and k1(u

2,hR) > 0, which suggests that k1(u,h) changes sign across the interface, then
we have k1(u

R,hR) = 0 for a1l P 1. In this case, the wave structure is similar to that of 2(a), and is also
shown in Fig. 2(a). For a2l P 1, we have k1(u

L,hL) = 0, and the wave pattern is similar to that of 2(b),
as shown in Fig. 2(b). We have the trivial case of this for k1(u

1,hL) = 0 or k1(u
2,hR) = 0.

We note that the inhomogeneity condition makes the breaking of the k1-wave unusual in the above.
Under the condition that a1l P 1 for all l and a1k > 1 for some k, the interface actually represents a bottle-
neck before which an extra k1-wave is needed (Fig. 2(a)), provided that the upcoming vehicles are dense
enough. Precisely this corresponds to wave patterns 2(a) and (c) with q1 P q* (i.e., k1(u

1,hL) 6 0), or the
wave pattern 2(a) for which q1 < q* and q2 P q*, but (2.17) is not satisfied. The latter occurrence is typical
of bottleneck traffic for which a ‘‘blow-up’’ in total density (qL > q* > max(q1,qm+1)) is expected before the
interface, corresponding to a k1-shock. Under the condition that a1l 6 1 for all l and a1k < 1 for some k, on
the other hand, Fig. 2(b) indicates that these denser traffic (q1 P q*) in wave patterns 2(b) and (c) will be
relieved by the k1-rarefaction before the interface. Also refer to Propositions 2.1 and 2.2 below.

For the scalar case m = 1, in which the kl-waves disappear for l > 1 and u2 = um+1 becomes known ini-
tially, the wave patterns as shown in Figs. 1 and 2 are identical to those that were solved exactly and proved
to be unique in [24]. The consistency enhances the credibility of the above description of the k1-wave that is
adjacent to the interface.

Furthermore, the conclusions for all of the kl-waves in [28] can be directly applied in this Riemann
problem, because each of the waves is either in D� or in D+, where h(x) is constant. In general, all of these
kl-characteristic fields are genuinely non-linear, and thus they correspond to either shocks or rarefactions.
Let u� and u+ be the left and right states of a certain kl-wave, respectively, and, supposing that the function
v(q) is concave, namely, v 0 0(q) 6 0, then the following two propositions in [28] may be cited.
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Proposition 2.1. A kl-shock is characterized by the following: q� < q+, q�k < qþk for k P l and q�k > qþk for

k < l.

Proposition 2.2. A kl-rarefaction is characterized by the following: q� > q+, q�
k > qþ

k for k P l and

q�
k < qþ

k for k < l. Moreover, all of the functions q(h) and qk(h) are monotone in the rarefaction fan, where
h = x/t.

It was also indicated in [28] that the two propositions should be applicable to a generally given func-
tion v(q). Furthermore, the physical meanings of these waves described in the propositions are related
to overtaking among all types of vehicles and the wave motions. It was indicated that the k1-wave is
overtaken by all types of flows. This means that by k1-wave the influence on the flow comes from the
downstream completely. The kl-wave (l > 1) is overtaken by the kth flow for k P l, whereas this wave
overtakes the other k � 1 flows. It follows from the above that the lth flow (l < m) is influenced by
these kk waves both from the downstream (if k 6 l) and the upstream (if k > l), and that the mth flow
is influenced only by the downstream because it overtakes all other flows. Actually, these conclusions
are implied in the inequalities of (2.7) and the monotonicity of all densities as shown in Propositions
2.1 and 2.2 is just for accommodation to the described overtaking. See [28] for more details in the
mathematical analysis.
3. Numerical schemes

For the numerical approximation of the model equations, we follow the basic ideas that are stated in
Section 1. We first apply the modified equivalent system (2.1), which is written in two parts as follows:
ut þ f ðu; hÞx ¼ 0;

ht þ ox ¼ 0;
ð3:1Þ
where the flux o = 0. We note that h is a solution vector for temporal evolution in the computation. Let
f̂ and ô be the two numerical flux functions that correspond to the fluxes f and o, respectively, of (3.1).
Then, a standard conservative scheme of (3.1) reads:
dui
dt

þ 1

Dx
ðf̂ iþ1=2 � f̂ i�1=2Þ ¼ 0;

dhi
dt

þ 1

Dx
ðôiþ1=2 � ôi�1=2Þ ¼ 0:

ð3:2Þ
In the following, the numerical fluxes f̂ iþ1=2 and ôiþ1=2 are reconstructed by the WENO method through
the Lax–Friedrichs flux splitting. As the characteristic decomposition of the system is impossible due to the
implicitness of all of the kl, or the singularity of the matrix R that contains the right eigenvectors (see dis-
cussions of (2.7)–(2.10)), the component-wise WENO reconstruction is adopted. For a detailed account of
the WENO scheme, see [8,15,16] or [23,28], which are more relevant to the discussed model.
3.1. Component-wise finite volume (FV) WENO scheme

The fifth-order accurate WENO FV scheme applies the cell averages fðuj; hjÞgiþ2
j¼i�2 to reconstruct

ðu�iþ1=2; h
�
iþ1=2Þ, which are cell boundary values of xi+1/2 on the left-hand side. With fðuj; hjÞgiþ3

j¼i�1,
ðuþiþ1=2; h

þ
iþ1=2Þ are similarly constructed, and are cell boundary values of xi+1/2 on the right-hand side. Thus,

we use the Lax–Friedrichs numerical fluxes as follows:
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f̂ iþ1=2 ¼
1

2
ðf ðu�iþ1=2; h

�
iþ1=2Þ þ f ðuþiþ1=2; h

þ
iþ1=2Þ � aðuþiþ1=2 � u�iþ1=2ÞÞ;

ôiþ1=2 ¼ � 1

2
aðhþiþ1=2 � h�iþ1=2Þ:

ð3:3Þ
Eqs. (3.3) and (3.2) constitute a complete semi-discretized scheme.

3.2. Component-wise finite difference (FD) WENO scheme

In this scheme, we first use the Lax–Friedrichs flux splitting as follows:
f þ ¼ 1

2
ðf ðu; hÞ þ auÞ; f � ¼ 1

2
ðf ðu; hÞ � auÞ;

oþ ¼ 1

2
ah; o� ¼ � 1

2
ah;

ð3:4Þ
where (u,h) = (uj,hj), j = i � 2, . . . ,i + 3 are point values of the solution. With ðf þ
j ; o

þ
j Þ ¼ ðf þðuj; hjÞ;

oþðhjÞÞ � wj for j = i � 2, . . . ,i + 2, we proceed with the WENO reconstruction in the cell Ii to obtain
w�

iþ1=2, and then set ðf̂ þ
iþ1=2; ô

þ
iþ1=2Þ ¼ w�

iþ1=2. Similarly, with ðf �
j ; o

�
j Þ ¼ ðf �ðuj; hjÞ; o�ðhjÞÞ � wj for

j = i � 1, . . . ,i + 3, we proceed with the WENO reconstruction in the cell Ii+1 to obtain wþ
iþ1=2, and then

set ðf̂ �
iþ1=2; ô

�
iþ1=2Þ ¼ wþ

iþ1=2. The numerical fluxes are thus given by
f̂ iþ1=2 ¼ f̂
þ
iþ1=2 þ f̂

�
iþ1=2; ôiþ1=2 ¼ ôþiþ1=2 þ ô�iþ1=2: ð3:5Þ
Eqs. (3.5) and (3.2) give the scheme.
In (3.3) and (3.4), a ” max(u,h)max1 6 l 6 m|kl(u,h)|. As all of the kl are implicit, a slightly larger estimation

of a is made according to (2.7)
a ¼ max
ðu;hÞ

max v1 þ
Xm
l¼1

ql
ovl
oq

�����
�����; jvmj

 !
: ð3:6Þ
The maximum is taken over the relevant region of (u,h) = (uj,hj) for all j.
We apply the third-order accurate TVD Runge–Kutta time discretization [17], for which the semi-dis-

crete scheme (3.2) is written as the ODEs
ut ¼ Lðu; hÞ:

For the numerical stability of the described WENO scheme, considerable numerical experience suggests

the following CFL condition [6]:
aðnÞ
DtðnÞ

Dx
6 CFL; ð3:7Þ
where the CFL number can be taken as 0.6, and Dt(n) and a(n) are the corresponding values at time level n. It
is favorable that the same CFL condition is also applicable even though the inhomogeneous factors are
included in the model.

With respect to the discussed schemes, we remark that the application of the Lax–Friedrichs flux split-
ting is crucial because it generates correct numerical viscosity that follows the characteristic direction and
stabilizes the shock profile. Under the standard conservative scheme of the form (3.2), which corresponds to
the standard conservation form (3.1), the numerical viscosity is represented (taking the FV scheme for
example) by �0:5aðuþiþ1=2 � u�iþ1=2Þ and �0:5aðhþiþ1=2 � h�iþ1=2Þ in (3.3). This is theoretically sound provided
that the system is strictly hyperbolic (Fig. 1 and the corresponding wave patterns 1(a)–(c)); moreover, it
also performs well according to our numerical test even for non-strictly hyperbolic cases (Fig. 2 and the
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corresponding wave patterns 2(a)–(c)). The Roe flux splitting appears to be another simple choice but it is
likely to generate entropy violating solution [16].

On the other hand, the first-order Lax–Friedrichs scheme generates too much numerical viscosity which
smoothes discontinuities considerably. To retrieve a sharp profile, as usual the WENO reconstruction is
adopted because of its high-resolution and higher-order accuracy, which suppresses non-physical oscilla-
tions at the same time. In addition, the WENO scheme can be easily implemented without the designing
of limiters [16]. Of course, a well estimated viscous coefficient a by (2.7) is also extremely important in
reducing redundant numerical viscosity so as to improve a discontinuous profile.

We note that a direct application of the scheme to original conservation form (1.3) is to drop the second
equality of (3.1), and thus these second equalities of (3.2)–(3.4). This naturally suggests that the discontin-
uous coefficients in h(x) be fixed for temporal evolution, as they appear to be. However, significant numer-
ical oscillations appear near the interface (the discontinuity of h) in our numerical test.

Finally, numerical experiment indicates that the replacement of the Lax–Friedrichs flux with the local
Lax–Friedrichs flux in our schemes of (3.2)–(3.6) makes little difference in numerical results. Here, the local
Lax–Friedrichs flux is different from the (global) Lax–Friedrichs flux only by the maximum in (3.6) which is
taken over j = i � 2, . . . ,i + 3. Accordingly, the viscosity coefficient is denoted by a = ai and a(n) of (3.7) is
the maximum taken over all i.
4. Numerical examples

In Section 4.1, numerical tests are conducted to determine the waves that are described in Section 2.2.
The traffic that approaches the stop line of a traffic signal is simulated in Section 4.2. These examples
are computed using the component-wise FD WENO scheme. We note that the component-wise FV WENO
scheme generates similar results.

For a clear observation of these waves, the velocities of (1.1) are set to be linear [7,22],
vðqÞ ¼ vf 1� q
qjam

 !
:

In all of the illustrations, the densities ql and q are scaled by qjam so that 0 6 ql,q 6 1, and the spatial and
temporal lengths L and T of the computational domain (0,L) · (0,T) are scaled to unity. These dimension-
less variables are also used wherever they are not followed by a unit.

4.1. Resolution of the waves compared to the analytical results

The initial data in this section are given by the Riemann problem (2.11), with the translation of x = 0 to
x = x0 somewhere in (0,L). Furthermore, we set m = 3, which is small enough for a clear observation of the
wave breaking. For simplicity, bl(x) are set to be constant for all l, namely,
b1ðxÞ ¼ 0:5; b2ðxÞ ¼ 0:75; b3ðxÞ ¼ 1: ð4:1Þ

The other parameters are:
L ¼ 8000 m; T ¼ 400 s; vf ¼ 20 m=s; Dx ¼ 10 m; and DtðnÞ ¼ 0:6Dx=aðnÞ;
where T is the simulation time.
Figs. 3–10 show the numerical results, which are designed to reproduce all of the analytical wave pat-

terns in Section 2.2, and to confirm Propositions 2.1 and 2.2. In each figure, we observe the waves as
follows.
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First, we count the wave number. Four (m + 1) waves are observed in Figs. 3–6 that correspond to the
wave patterns that are described in 1(a)–(c) and illustrated in Fig. 1(a) and (b). In these cases, the system is
strictly hyperbolic. In Figs. 7–10, there are five (m + 2) waves, which correspond to the wave patterns that
are described in 2(a)–(c) and illustrated in Fig. 2(a) and (b). In these cases, the system must be non-strictly
hyperbolic.

Second, we identify all of the kl-waves in each figure according to Propositions 2.1 and 2.2. We first ob-
serve the monotone change of the total density that is shown in the right part of the figure, such that each of
these waves is identified to be either a shock or a rarefaction. Accordingly, as shown in the left part of the
figure, the monotone changes for all density ql across or in the same wave are observed and confirmed to be
in accordance with Proposition 2.1 (for a shock) or Proposition 2.2 (for a rarefaction).

Third, as shown in Figs. 7(b)–10(b), we note that qR = q* = 0.5 (in Figs. 7(b) and 9(b)) or qL = q* = 0.5
(in Figs. 8(b) and 10(b)) for the k1-rarefaction. These are the analytical results of the wave breaking across
the interface ð~k-contactÞ.
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In summary, we claim that the numerical results that are given by the developed scheme are completely
in accordance with the analytical properties that are predicted in Section 2.2.

In this observation, we also note that k1(u
2,hR) and k1(u

m + 1,hR) (m = 3) share the same sign in all of the
examples. This can be seen in Figs. 3(b)–10(b) (by (2.9)) and should be true in general. Therefore, some of
the predictions in Section 2.2 can also be made conveniently for the substitution of k1(u

2,hR) with
k1(u

m+1,hR).

4.2. Traffic signal control

We extend the developed scheme to an application in which the functions of h are also temporal. This is
very common in traffic problems, and signal control is a typical example of the extension. At the stop line,
the signal display turns from green to red (at t = 0s) and holds, for example, for 30 s, and then turns back to
green for another 30 s. To reflect this regular change of traffic signal, which is near x = 0.35 on a road with
a section length L = 1200 m and a constant a(x), we suppose that all bl (m = 3) are given by (4.1) for the
green signal, but are zero near x = 0.35 and for the red light, as is described by the following:
Fig. 11
Dx = 1
simula
ðb1; b2; b3Þ ¼
ð0; 0; 0Þ if 0:34 < x < 0:36 and 0 < t � 60½t=60� 6 30 s;

ð0:5; 0:75; 1Þ; otherwise:

�
ð4:2Þ
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For the initial condition:
Fig. 12
given
uðx; 0Þ=a ¼ ð0:05; 0:25; 0:1ÞT; ð4:3Þ

the numerical result is shown in Fig. 11. In Fig. 11(a) and (b), a waiting queue can be clearly seen before the
stop line, which propagates backward during the interval before the green signal. Furthermore, the total
density q reaches its maximum in the queue. On the right-hand side of the stop line, propagation of three
shocks is observed with a long trail of vacuum left behind. As stated in Section 2, these shocks represent
overtaking between the three types of vehicles. Fig. 11(c) shows the whole process of the evolution just
in a period when the queuing and dissipation near the stop line are well reflected. Obviously, our scheme
is able to simulate traffic signal control for any longer time.

To test the adaptability of the scheme and see the queuing and dissipation in the presence of more vehic-
ular types, we also set m = 5 and
ðb1; b2; b3; b4; b5Þ ¼
ð0; 0; 0; 0; 0Þ if 0:34 < x < 0:36 and 0 < t � 60½t=60� 6 30 s;

ð0:6; 0:7; 0:8; 0:9; 1Þ; otherwise:

�
ð4:4Þ
The initial data are given by
uðx; 0Þ=a ¼ ð0:15; 0:05; 0:1; 0:05; 0:05ÞT: ð4:5Þ

The change in total density for this case is shown in Fig. 12. In comparison with Fig. 11(c), a major differ-
ence in this example is that propagation with more stairsteps (precisely five shocks) of the passing vehicles is
observed.

Finally, we remark that the validity for the extension from spatially varying coefficients in h(x) to both
spatially and temporally varying coefficients in h(x,t) is somewhat implied in the numerical scheme itself. In
each step for temporal updating, solution at time level n + 1 is obtained from time level n at which the infor-
mation is taken as the new initial conditions except that coefficients in h(n) might be altered. Therefore, it
would make no difference to the scheme whether or not h is temporally dependent, especially when the
intervals between temporal changes in h are sufficiently long and that these changes are physically reason-
able. Actually all the coefficients bl(x,t) for the traffic signal control problem are set to be discontinuous in t

with long intervals near the stop line; moreover, they ensure physical boundedness of solution variables of
all densities. On the other hand, it seems difficult in general to perform an analytical study in the presence of
h = h(x,t).
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5. Conclusion

With the modified system, this numerical test of the multi-class traffic flow model on an inhomogeneous
highway shows the robustness of the WENO reconstruction when combined with the Lax–Friedrichs flux
splitting or Lax–Friedrichs numerical flux. Based on this standard hyperbolic conservation system (despite
it being non-strictly hyperbolic), the Lax–Friedrichs flux gives correct numerical viscosity for the conver-
gence of the numerical solutions to physically relevant solutions, whereas the WENO reconstruction re-
duces the surplus numerical viscosity to achieve a high level of resolution of the claimed waves. This
again indicates the robustness of the WENO reconstruction, especially when it is combined with the
Lax–Friedrichs flux to solve many complexities in application problems.

The application of the WENO scheme in this paper can be extended to solve other hyperbolic
conservation laws with spatially varying fluxes, such as elastic waves in heterogeneous media. It would
also be interesting to investigate the use of other well-known numerical schemes, such as the RKDG
scheme [4,5,3].
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